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INTRODUCTION

It has been well recognized that merging information from different imaging modalities,
such as mammaography, sonography and magnetic resonance imaging (MRI), will greatly
benefit the diagnosis of breast cancer [1-4], as well as contribute to the assessment of
tumor response and image-guided therapy. However, interpreting images from different
modalities is not trivial as different images of the same lesion may exhibit different
physical lesion characteristics, and the image acquisitions are performed under different
breast positioning protocols. Also, the breast is a non-rigid object, and thus conventional
image registration methods are not appropriate. So the primary problem of merging
image information from different modalities is to address the task of identifying
corresponding images of lesions as seen with different imaging techniques. The purpose
of this research is to develop correlative feature analysis methods for integrating image
information from multi-modality breast images, taking advantage of the information from
different views and/or different modalities, and thus improving the sensitivity and
specificity of breast cancer diagnosis. A novel aspect of the proposed research is the
development of correlative feature analysis (CFA) into the decision-making process. Our
hypothesis is that the proposed correlative feature analysis can benefit computerized
corresponding image analysis, thus help the radiologist efficiently distinguish between
corresponding and non-corresponding lesion pairs. This report summarizes the progress
of this Predoctoral Traineeship Award project made by the recipient during the first year.



BODY

Training Accomplishments

At the time of this report, the recipient, Yading Yuan, of the Predoctoral Traineeship
Award has taken 21 out of the 22 required courses towards the Ph.D. degree in medical
physics. The remaining one course will be taken in 2007, Fall. The courses include
physics of medical imaging, physics of radiation therapy, mathematics for medical
physicists, image processing, statistics, machine learning, numerical computation,
computer vision, anatomy of the body, radiation biology, and teaching assistant training.

Research Accomplishments
1. Database collection

The first part of our work has been collecting a multi-modality image database from the
University of Chicago Hospitals, which includes full-field digital mammographic
(FFDM) images, breast ultrasound (US) images and breast magnetic resonance (MR)
images. The FFDM database consists of 148 malignant and 139 benign lesions. All the
images were obtained from GE Senographe 2000D systems with a spatial resolution of
95umx95um. The US database consists of 195 malignant solid lesions, 77 simple cysts,
25 fibrocystic nodules and 109 benign solid lesions. The US images were obtained with a
Philips HDI 5000 US unit and a 12-5MHz linear array probe. The pixel size varied from
53 um to 212 um, with the average value of 114 um. The MR database consists of 97
malignant and 84 benign lesions. The MR images were obtained from 1.5T GE scanners
using T1-weighted 3D spoiled gradient echo sequences. For each case, one pre-contrast
and five post-contrast series were taken and each series contained 60 coronal slices with a
range of planar spatial resolution from 1.25x1.25mm? to 1.6x1.6mm? Slice thickness
ranged from 3 to 4 mm depending on breast size. All the cases in the multi-modality
database were identified by expert breast radiologists based on visual criterion and either
biopsy or aspiration proven reports.

Based on the FFDM database, we constructed 123 corresponding image pairs and 82 non-
corresponding pairs. Each pair consists of a craniocaudal (CC) view and a mediolateral
(ML) view. Considering the most realistic scenario of lesion mismatch in clinical
practice, the non-corresponding pairs were constructed from cases of the same patients
but different physical lesions. Since in our database the number of patients having two or
more lesions in the same breast is limited, the non-corresponding dataset included all
possible lesion combinations from different views.

With the whole multi-modality database, we also constructed a dataset with 112 cases
having both mammography and sonography. By incorporating MR images, there are 88
cases having all the three modality images so far. We are currently having radiologists
determine the correspondence of lesions appeared in different modality images.

2. Investigation of lesion segmentation



Mass lesion segmentation on mammograms is a challenging task since mass lesions are
usually embedded and hidden in varying densities of parenchymal tissue structures. We
have developed a dual-stage method for automatic delineation of lesion boundaries on
FFDM images. This method utilizes a geometric active contour model that minimizes an
energy function based on the homogeneities inside and outside of the evolving contour.
Prior to the application of the active contour model, a radial gradient index (RGI) based
segmentation method is applied to yield an initial contour closer to the lesion boundary
location in a computationally efficient manner. Based on the initial segmentation, an
automatic background estimation method is applied to identify the effective circumstance
of lesion, and a dynamic stopping criterion is implemented to terminate the contour
evolution when it reaches the lesion boundary. By using the FFDM database described
above, we quantitatively compare the proposed algorithm with a conventional region-
growing method and a RGI-based algorithm by use of the area overlap ratio between
computer segmentation and manual segmentation by an expert radiologist. At an overlap
threshold of 0.4, 85% of the images are correctly segmented with the proposed method,
while only 69% and 73% of the images are correctly delineated by our previous
developed region-growing and RGI method. A full description of the method is in
reference [5] which is attached as Appendix A.

3. Investigation of feature correlation

We evaluated the correlation performance of individual computerized features extracted
from the FFDM images of a lesion obtained in CC and ML views. In order to evaluate the
robustness of the correlation performance to lesion segmentation, besides the
radiologist’s outlines, three automatic segmentation methods were employed to extract
the mass lesion from the surrounding tissues, which includes a conventional region-
growing method, a RGI-based method and the newly-developed dual-stage segmentation
method. 15 computer-extracted features of each lesion were calculated in both views in
order to quantify the characteristics of margin, shape, contrast and texture of the lesion.
For each feature, correlation coefficient between the two views and the p-value of the
derived correlation coefficient were obtained. Our results show that the features
characterizing shape, contrast and texture performed better among the 15 individual
features despite of segmentation methods and pathology. This is because the features
representing large-scale information are less sensitive to the change of position than those
representing small-scale information, which results in the higher correlation between
large-scale features from different views than that of small-scale features. This work
provides a guide for discriminating corresponding and non-corresponding lesion pairs
within the CAD framework. It is also helpful for guiding the development of new
features to improve the accuracy of image matching in disease diagnosis and prognosis.
A more detailed summary can be found in reference [6], which is also attached as
Appendix B.

Mutual information (M) is another measure of the dependence between two variables. It
is well understood that mutual information measures the general dependence, while the
correlation coefficient measures the linear dependence. So we also investigated the
mutual information among the features and assessed its effect on the choice of



discriminating features as compared with the use of linear correlation coefficient between
features. For each feature described above, mutual information between the two views
was obtained using a density estimation method (e.g., Parzen windows). However, the
dependence rank of features determined by mutual information highly agreed with that
determined by linear correlation coefficient, yielding a correlation coefficient of 0.87.
This result indicated that linear correlation coefficient is a good metric to represent the
dependence between features from different views. Moreover, since linear correlation
coefficient is bounded to [-1,1], we will use linear correlation coefficient as the metric to
choose the discriminating features.

4. Development of new computerized features

Since features characterizing large-scale information usually have better correlation
performance, we developed two sets of “large-scale” features. Firstly, we extracted a set
of texture features based on a gray-level co-occurrence matrix (GLCM). For each region,
four GLCMs were constructed along four different directions of 0°, 45°, 90° and 135°.
Assuming that there is no directional texture features in mammograms, a non-directional
GLCM was obtained by summing all the directional GLCMs. Texture features were then
computed from each non-directional GLCM. To avoid sparse GLCMs for smaller lesions,
the gray level range of image was scaled down to 6 bits, resulting in GLCM of size
64x64. Among the texture features, correlation feature performed best with a correlation
coefficient of 0.67 (p-value < 10°%).

In clinic practice, radiologists commonly use the distance from nipple to the center of a
lesion to correlate the lesion in different views. It is generally believed that this distance
keeps fairly constant. Thus, we developed a distance feature to measure the Euclidean
distance between the nipple location and the mass center of lesion. We also developed an
automatic nipple localization scheme to tracking nipple markers on each FFDM images.
With computer-identified nipples, the distance features in CC views are highly correlated
with those in ML views, yielding a correlation coefficient of 0.88 (p-value < 107%).

5. Evaluation of the performance of computerized features for the task of
distinguishing corresponding image pairs and non-corresponding ones

We used the FFDM database to evaluate the performance of computerized features for
the task of distinguishing corresponding and non-corresponding image pairs from CC and
ML views [7]. 17 features that were automatically extracted from the lesions could be
grouped into three categories: (I) density and morphological features; (I1) texture features
and (111) distance feature. A stepwise feature selection procedure was employed to select
an effective subset of features, which were then combined by Bayesian artificial neural
networks (BANN) to obtained a discriminant score, yielded an estimate of the probability
that the two images are of the same physical lesion. Receiver characteristic (ROC)
analysis was used to evaluate the classification performance of the individual features and
the selected feature subset. The distance feature yielded an AUC (area under the ROC
curve) of 0.81 with leave-one-out cross-validation, and the feature subset with 3 features
yielded an AUC of 0.86. The preliminary study, which includes 124 corresponding and



35 non-corresponding image pairs, has been submitted to SPIE Medical Imaging
Conference, 2008. The abstract is attached as Appendix C.



KEY RESEARCH ACCOMPLISHMENTS

Collected and maintained a multi-modality database including full-field digital
mammograms, breast ultrasound images and breast MR images. More than 180
lesions were collected for each modality, which is suitable for the further correlative
feature analysis across image modalities.

Developed a dual-stage lesion segmentation method for FFDM images, which
outperformed the performances of our previous developed region-growing method
and the RGI-based segmentation method.

Investigated feature correlation with both linear correlation coefficient and mutual
information. The results demonstrate that the features representing large-scale
information of lesions usually have better correlation performance and linear
correlation coefficient is an appropriate metric characterizing the dependence
between features from different views.

Developed texture features and distance feature, which have been proven to be useful
in differentiating corresponding and non-corresponding image pairs.

Evaluated the performance of computerized features for the task of distinguishing
corresponding and non-corresponding image pairs. The selected feature subset
yielded an AUC of 0.86 with leave-one-out cross-validation.



REPORTABLE OUTCOMES

Peer-reviewed Journal Papers

* Y. Yuan, M. L. Giger, H. Li, K. Suzuki and C. Sennett, “A dual-stage method for
lesion segmentation on digital mammograms”, Med. Phys, (In press), 2007.

Conference Proceeding Papers

* M. L. Giger, Y. Yuan, H. Li, K. Drukker, W. Chen, L. Lan and K. Horsch, “Progress
in breast CADx, ” Biomedical imaging: From Nano to Macro, 2007. ISBI 2007. 4th
IEEE International Symposium on, Arlington, Virginia, 2007

e H. Li, M. L. Giger, Y. Yuan, L. Lan, K. Suzuki, A. Jamieson and C. Sennett,
“Comparison of computerized image analyses for digitized mammograms and FFDM
images, ” International Workshops on Digital Mammography, Manchester, United
Kingdom, 2006

Conference Presentations and Abstracts
* Y. Yuan, M. L. Giger, H. Li and C. Sennett, “Correlative feature analysis of FFDM
images”, submitted to SPIE Medical Imaging Conference, 2008.

* Y. Yuan, M. L. Giger, H. Li and C. Sennett, “Computer-based feature correlation on
multiple-view FFDM images”, Radiological Society of North America, Chicago,
Illinois, 2006



CONCLUSIONS

The recipient of the Predoctoral Traineeship Award has taken all the required core
courses and many research related elective courses as well. These trainings have proven
useful for the recipient to achieve the proposed research goals.

During the first year, we have collected and maintained a multi-modality database
including full-field digital mammograms, breast ultrasound images and breast MR
images, which is suitable for the proposed research on correlative feature analysis for
multi-modality images. We have developed computerized methods for lesion
segmentation, feature extraction and selection, feature correlation analysis and image pair
classification in differentiating corresponding and non-corresponding FFDM image pairs
from CC and ML views, respectively. The results have shown that our computerized
feature correlative analysis has great potential in identifying the corresponding image pair
of a lesion for FFDM images.

Overall, we have achieved the goals for the first year and laid down a good foundation
for the research in the next two years. Our goals in the next two years include collection
of more image data, development of feature selection method based on mutual
information and compare it with stepwise feature selection and genetic algorithm-based
feature selection methods, investigation of features that would have better correlation
between image pairs across different image modalities, and evaluation of the proposed
feature correlative analysis with the whole multi-modality database.
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Abstract

Mass lesion segmentation on mammograms is a challenging task since mass lesions
are usually embedded and hidden in varying densities of parenchymal tissue structures.
In this paper, we present a method for automatic delineation of lesion boundries on
digital mammograms. This method utilizes a geometric active contour model that
minimizes an energy function based on the homogeneities inside and outside of the
evolving contour. Prior to the application of the active contour model, a radial gradient
index (RGI) based segmentation method is applied to yield an initial contour closer
to the lesion boundary location in a computationally efficient manner. Based on the
initial segmentation, an automatic background estimation method is applied to identify
the effective circumstance of lesion, and a dynamic stopping criterion is implemented
to terminate the contour evolution when it reaches the lesion boundary. By using a
full-field digital mammography database with 739 images, we quantitatively compare
the proposed algorithm with a conventional region-growing method and a RGI-based
algorithm by use of the area overlap ratio between computer segmentation and manual
segmentation by an expert radiologist. At an overlap threshold of 0.4, 85% of the
images are correctly segmented with the proposed method, while only 69% and 73%
of the images are correctly delineated by our previous developed region-growing and
RGI methods, respectively. This resulting improvement in segmentation is statistically
significant.

Key words: Mass lesion segmentation, geometric active contour model, computer-

aided diagnosis, breast cancer



I[. INTRODUCTION

Breast cancer is the most common malignancy in American women and the second most
common cause of death from malignancy in this population. According to the American
Cancer Society, about 178,480 women in the United States will be found to have invasive
breast cancer in 2007, and about 40,460 women will die from the disease this year [1].
Although some imaging modalities, such as magnetic resonance imaging (MRI)[2][3] and
sonography|4]||5], are currently being investigated to improve sensitivity and specificity of
breast cancer diagnosis, X-ray mammography is still the most prevalent imaging procedure
for the early detection of breast cancer.

Lesion segmentation, which extracts the lesion from the surrounding tissues, is an essen-
tial step in the computerized analysis of mammograms. As mass lesions are usually embedded
and hidden in varying densities of parenchymal structures, the task of lesion segmentation
is not trivial. Many researchers have developed computer algorithms for this task. Huo et
al. [6] employed a region-growing method to find the contour, in which abrupt changes in
size and circularity were used as the rules of segmentation. Kupinski et al. |7] segmented
the mass by applying either a radial gradient index (RGI) model or a probabilistic model to
the lesion, multiplied by a constraint function. Petrick et al. [8| introduced a segmentation
algorithm that combines a density-weighted contrast enhancement filter and a region grow-
ing method. Li et al. [9] employed a multiresolution Markov random field model to detect
tumors in mammographic images. Timp et al. [10] employed both edge based information
as well as a priori knowledge about the grey level distribution of the region of interest (ROI)
around the mass, and obtained an optimal contour using dynamic programming. To segment
lesions, Guliato et al. [11] proposed two fuzzy sets related methods — one employing a region
growing after fuzzy-sets-based pre-processing, and the other using a fuzzy region-growing
method that takes into account the uncertainty present around the boundaries of tumor.
Li et al. [12]| presented a statistical model for enhanced segmentation and extraction of a

suspicious mass area from mammographic images. In their study, a morphological operation



is derived to enhance disease patterns of suspected masses by eliminating unrelated back-
ground clutter, and a model-based image segmentation is performed to localize the suspected
mass areas using stochastic relaxation labeling.

Originally introduced by Kass [13], active contour models (or snakes) have attracted much
attention as image segmentation techniques. An active contour model minimizes an energy
functional along a deformable contour, which is influenced by both internal and external
terms. The internal energy controls the smoothness and elasticity of the contour, while
the external energy attracts the evolving contour to deform toward salient image features,
such as edges. Although the active contour model has been used for segmenting objects in
a wide range of medical applications [14][15][16][17][18][19], to the best of our knowledge,
few works have applied this model to the task of lesion segmentation in mammographic
images. Brake et al. [20], segmented mass lesions by a discrete active contour method
whose external energy was determined by the image gradient magnitude. Sahiner et al. [21]
applied an active contour model that incorporated edge and region analysis, in which the
contour energy was minimized by a greedy algorithm. In their work, however, the contour
was represented by the vertices of an N-points polygon and each vertex was tracked during
the process, which makes it difficult for the contour to adapt to a change of topology, such
as splitting or merging parts.

Differing from the segmentation methods mentioned above, in this study, we develop an
automatic lesion segmentation algorithm that employs a geometric active contour model to
extract lesions. Geometric active contour models [22]|[23] represent contours as a level set
of a higher-dimensional scalar function|24|. The contours are obtained only after complete
evolution, thereby allowing the model to handle the topological changes naturally. As mass
lesions usually have weak edges, we use a region-based active contour model |25] that is based
on global image information, and is less sensitive to noise and the initial contour. In order to
improve the computational efficiency and suppress the influence of unrelated structures, our

previous RGI-based segmentation method|7| is applied first to delineate an initial contour,



which is relatively close to the actual margin, and to estimate the effective background. We
then exploit a dynamic stopping criterion, which is solely based on the property of the given
image, to terminate the evolving procedure automatically.

The organization of this paper is as follows: Section 2 introduces the database used for
this study. Section 3 describes the proposed segmentation method. Section 4 presents the

results, and Section 5 and 6 give a discussion and conclusion, respectively.

II. MATERIALS

In this study, we used a full-field digital mammography (FFDM) database, which consists
of 139 benign (327 mammograms) and 148 malignant (412 mammograms) lesions. All the
images were collected from the University of Chicago Hospitals (UCH) and obtained from
GE Senographe 2000D systems (GE Medical Systems, Milwaukee, WI) with a spatial res-
olution of 95 um x 95 um. The masses were identified and outlined by an expert breast
radiologist based on visual criterion and biopsy-proven reports. These outlines were used as
the “gold standard” for calibrating parameters and evaluating performace. The distributions
of effective projection diameter, which is defined as the effective diameter of the area inside

the radiologist’s manually-delineated contours, are shown in Fig. 1.

[Figure 1 about here.|

I1I. METHODS

The main aspects of the proposed segmentation method include an initial RGI segmentation|7],
background estimation and trend correction, and an active contour segmentation based on

level sets. Fig. 2 shows the flow chart of the overall implementation.

[Figure 2 about here.|



A. Active contour model

The active contour model |25] relies on an intrinsic property of image segmentation: for an
image formed by two regions, each segmented region should be as homogeneous as possible.

Mathematically, this model can be expressed by the following energy function:

E(ci, ¢, C) = p- Length(C)
e [ e y) - afdudy
inside(C)

Do [ pfey) - efdsdy (1)
outside(C)

where 1 > 0, A1, Ay > 0 are fixed weight parameters, C is the evolving contour and
Length(C') is a regularizing term that prevents the final contour from converging to a small
area due to noise, and ¢; and ¢y are mean values inside and outside of C', respectively. Note
that many other active contour models are edge-based as opposed to the gray-level based
method used here.

Equation (1) can be represented and solved by level set theory [26]. Level set theory, in
which the two-dimensional evolving contour C' is represented implicitly as the zero level set of
a three-dimensional Lipschitz function ¢(z, y), i.e. C = {(z, y) € Q: ¢(z, y) = 0}, evolves
the contour by updating the level set function ¢(z, y) at fixed coordinates through iterations
instead of tracking the contour itself. The initial level set function ¢(x,y) is usually defined

as the signed distance function:

Pz, y; t =0) = £d (2)

where d is the distance from (x, y) to C(t = 0), where C'(t = 0) corresponds to the initial
contour. The plus (minus) sign is chosen if the point (z, y) is inside (outside) the initial

contour C'(t = 0).



With the evolution of the contour, the level set function ¢ cannot be held as a signed
distance function, nor can it be kept smooth. In order to maintain a smooth level set function,
and thus ensure numerical stability of evolution, it is necessary to reinitialize the evolving
level set function to a signed distance function periodically. However, reinitialization is a
computationally consuming procedure as it evolves solving the partial differential equation
¢ = sign(oy)(1— || Vo ||), where Vo, corresponds to the gradient of the level set function.
In addition, most reinitializing schemes tend to move the contour to some degree due to
numerical errors [27].

A signed distance function ¢, however, has the intrinsic property that || V¢ ||= 1. Thus,
it is more natural to incorporate this property into the contour evolution instead of using
the independent reinitializaing procedure described above. Thus, we can introduce another

regularizing term |28] in the active contour model in (1) :

E(ci, ¢, C) = p- Length(C)

1
e / (1= | Vor |)2ddy
Q

P / fola, y) — eifPdady
inside(C)

B [ il y) - fdedy 3
outside(C)

where v is a weighted parameter and () represents the whole image space.
By replacing C with ¢(z, y) in the energy functional in (3) and introducing the regularized
[

versions of the Heaviside function H.(¢) = 1[1 + 2arctan(2)]along with the corresponding

€

Dirac measure d.(¢) = £ H(¢) = € [r- (¢ + ¢*)]7!, as given by Chen and Vese in [25],

Equation (3) can be expressed as:



Efciend) = - / 5.6z, 1)) || Vé(a,y) | dedy

Q

1
w5 [0 Votay) |dady
A [ o) = P H (6. ) dody

- / folz,y) — eaf2(1 — Ho(o(z, y)))drdy (4)

where the first integral controls the length of the contour and the second integral helps to
smooth the level set function and thus avoid the need for reinitialization.
By fixing ¢; and ¢y and minimizing F,. in terms of ¢ at each iteration, the associated

Euler-Lagrange equation can be derived as:

50) [ =M+ U = e + 0+ (o = ]+ vedil( = =) Ve =0 6)
where
= dw Ve
<= ) ©)

represents the curvature of the contour C', and which also now incorporates the regularizing
term from Li et.al.[28]. This derivation, combining the aspect of active contour without
edges and level set without reinitialization, is given in the Appendix I. Using the gradient
descent method, we can solve ¢ in Equation (5) iteratively by letting ¢ be a function of
iteration ¢ and replace the zero on the right-hand side of (5) by the time derivative of ¢.

Thus, we obtain a partial differential equation as:

1

99 _ b
IV |l

Fr 0(9) - [k — A1 (fo — 1) + X2 (fo — @2)’] + v-div[(1

)- Vel (7)

The time derivative g—fwas approximated by a forward finite difference:



5¢ B ¢n+1 _ ¢n
6t At (8)

while considering the numerical stability of the PDE solution, the curvature x was approxi-
mated by a discretizing scheme that combines both foward and backward finite differences,

as suggested in [29].

( T )
k = AY o
((Af07))? + (m(A% gy, AL gr;)%)/?
v et ) )
“\((AY9R)? + (m(AL o}, AT ))?)?
where
AL = F(diz1; — i) (10)

and similarly for A%¢; ;.

m(a, b) = < . )mm(\a|, 1b]). (11)

B. Contour initialization

The energy function in Equation (3) depends on the evolving curve C' in a complex way. It
is not guaranted to be quadratic or even convex, and one might find a local minimum of the
energy function somewhere in the neighborhood of the initial contour. Thus, initializing the
contour is a non-trivial task for active contour models. Since lesions’ sizes vary, it is difficult
to find fixed parameters (such as the radius of a circle) with which to initialize the contour
for an entire database. Hence, we use our previous RGI-based segmentation method|7] to
estimate the initial boundary of a lesion.

The RGI-based segmentation algorithm|7| incorporates prior knowledge that mass le-



sions are roughly compact, and thus, the original image f(z, y) is multiplied with a two-
dimensional constraint function G(z, y; iz, py, 0%) to yield a pre-processed image h(z, y)

as:

h(z, y) = f(x, y) x G(x, Y; fo, Hy, o?) (12)

where G(x, y; piz, 1y, 0%)is a Gaussian function centered at the manually-indicated seed

2. The multiplication with the Gaussian function reduces

point (fi,, fty), and with variance o
the contribution of structures beyond the lesion, and thus, o is set to 15mm to accommodate
most mammographic lesion sizes. We have found that the segmentation performance is not
strongly dependent on the choice of o. Larger lesions can also be segmented even though
the small deviations around the margin of the lesion are usually not delineated well.
Starting from the given seed point (i, p,), a series of grey level thresholds are then

applied to the pre-processed image h(z, y) to yield multiple contours. For each contour, an

RGI value is calculated, where RGI is defined as:

I7 ()l

2. IVh(z,y) |l

RGI (e, Hy, Ci) = (13)

where C; is the set of points on the ¢th contour, VAi(z,y) is the gradient vector of h(z,y)
at point (z,y), 7(z,y)/ || 7(z,y) || is the normalized radial vector, the direction of which is
calculated at position (x,y) with respect to the seed point (g, ft,). Of these contours, the
one yielding the maximum RGI value is chosen as the contour that best delineates the lesion
in the initial step.

RGI represents the average proportion of the gradients in the radially outward direction.
The strategy of choosing maximum RGI works well for benign lesions as most have circular-
like shapes and smooth margins. However, for malignant lesions, because of irregular shapes
and spiculate margins, the resulting contours are usually under-grown. Nevertheless, RGI

provides a good initial contour for the following evolution driven by active contour model.
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C. Background estimation

In the active contour model, contour evolution relies on the competition between the region
inside the contour (foreground) and that outside the contour (background). The presence of
structure noises such as lymph nodes, parenchyma, and localization markers complicates the
background in mammgrams. RGI segmentation provides not only the initial contour, but
also a means to estimate the effective background surrounding the lesion. In our study, the
effective background is defined as the set of pixels within a given distance d (pixels) from

the circumscribed rectangle of the initial contour, as shown in Fig. 3.
[Figure 3 about here.]

Distance d plays an important role in determining the effective background. On one
hand, a large d yields a large region and thus better statistics on the background. On the
other hand, a small d would not be contaminated by nearby structures. In this study, an
automatic scheme was developed to determine the best distance d from a series of candidates.

For a series of distances d;, ¢ = 1, ..., L, two series of regions can be determined, as Fig.
4 (a) shows. One series of regions are background candidates B; (Fig. 4 (b)), and the other
series are net increases of background By; (Fig. 4 (¢)), where By; = Biy1—B;, i =1, ..., L—1.
Our method is based on the following two principles: With the expansion of background,
1) the mean gray value of B;, i.e. mean(B;), should decrease as more areas with lower gray
level are included; and 2) the standard deviation of By; , i.e. std(By;), should not change
substantially for relatively smooth background. By monitoring mean(B;) and std(By;) with
increasing d; , two potential distance candidates are obtained. One candidate is defined as
the distance at which mean(B;) reaches a minimum value, and the other candidate is defined
as the distance at which std(By;) demonstrates the maximum increase, as shown in Fig. 5.
At last, the final distance is chosen as the minimum of these two candidates. As for the

example in Fig. 4, the distance is automatically determined d = 110 (pixels).

|[Figure 4 about here.|
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|[Figure 5 about here.|

D. Background trend correction

Due to the non-uniformity of the background distribution, some pixels in the background
have similar gray values as in the lesion, which hinders the segmentation performance of the
active contour model. Thus, a two-dimensional background trend correction was employed
prior to segmentation. The background trend is estimated by fitting a two-dimensional
surface with a least-squares method to the gradual change in the background pixel values
within the extracted background estimation region. Here, we used a first-order ploynomial
function, i.e. f(z,y) = a+b-x+c-y, to describe the two-dimensional surface as higher order
polynomial functions will estimate mass lesion instead. Fig. 6 demonstrates the significance

of the background trend correction when a non-uniform background is present.

[Figure 6 about here.]

E. Dynamic stopping criterion

To stop the evolution of a contour, a pre-determined threshold is often used. Various metrics
can be used to check convergence of evolution, such as the change of level set function ¢ [30]
and the change of length of contour [31]. The contour evolution can also be terminated when
the area inside the contour differs from the initial one by a given value [32]. In our initial
study, we had ever defined a stopping criterion of relative foreground change (RFC), which is
the ratio between the change of foreground and the area of foreground. Comparing with the
stopping criterion of change of contour length used in [31], RFC has two advantages: 1) RFC
is a relative measure and thus is more suitable for lesions with various sizes; 2) RFC is more
computationally efficient as the aquisition of contour in [31] brings additional computation.
No matter the strategy is used, it is necessary to set some threshold in advance. However, due

to varying sizes of lesions as well as sizes of background obtained from automatic background

12



estimation, it is difficult to find a fixed parameter for controlling convergence.

In our preliminary work [33], we developed a dynamic method to terminate contour
evolution automatically. In that work, as the contour evolves, mean values of both foreground
and background will decrease gradually. As foreground is generally more homogeneous than
the background, the rate of foreground mean change is less than that of background mean
change. However, as the evolving contour crosses the lesion margin, the foreground mean
will decrease faster than will the background mean. Thus, during dynamic contouring, the
difference between the rate of foreground mean change and that of background mean change
is tracked, and contour evolution is terminated when the decrease of foreground mean value
is more rapid than that of the background mean value. This method provides a way to
terminate contour evolution free of pre-defined threshold. However, it neglects the influence
of sizes of both foreground and background, and thus ceases contour evolution earlier than
expected.

In order to address this problem, we modified the previous method, which we present
here in one dimension. As Fig. 7 shows, g(x) is a decreasing function defined on the interval
[0, L], and point s is moving within [0, L] at the speed of ¥. s also splits [0, L] into two
regions. For simplicity, the region [0, s] is named region 1, and [s, L] is region 2. Then, the

mean values of region 1 and 2 are:

|[Figure 7 about here.|

C1

[Sg(a)de [P y(a)de
i — C2 =
S L —s

.The slope of ¢; is:

13



dey dcy ds

dt ds dt
d |2 g(z)dx
_d (fo g9(x) ).
ds s
s)—c
_ 9 -a -
S
Here, we use the fact that v = % -0, where 0 is the outward unit vector. Similarly, the slope

of ¢y is :

@: g(s)_CQ_ﬁ
dt L—s ’

Thus, the difference between these two slopes is:

av=da_do_gblma, g m o) g

_ 14
UTTa T s L—s (14)

As the discussed above, as s moves within the object, we have Av > 0. As s moves across

Les.cr > H(a+e) as

the edge, Av will become negative. When Av = 0, we have g(s) = +-co+
in general L —s > s and ¢; > ¢y . However, if only the speed terms driven by image property
in Equation (7) are considered, the evolution should stop at sy such that g(so) = 3(c1 + c2).
Because of the influence of sizes, s will stop moving quickly if the criterion in Equation (14)
is used.

In order to eliminate the influence of size, a weighted difference between slope of ¢; and
that of ¢y is introduced as :

s dey  deo 1

Avw:L_S-E—E:L_S-[Q-g(s)—(cl+02)]-17. (15)

It can be shown that Av,, goes to zero at the desired contour so, where g(so) = 3(c1 + ¢2).
The one-dimensional case, described above, can be extended to two-dimensional one.

During the contour evolution, the weighted difference between the mean slope of foreground

14



and that of backgournd is monitored, and the contour evolution is terminated when the

weighted slope difference converges to zero.

F. Implementation

In order to calibrate parameters in the proposed segmentation method, ten digitized screen-
film mammograms (SFM) with spatial resolution of 100um x 100um were analyzed. The
calibrated segmentation method was then applied to the entire FFDM database for indepen-
dent performance evaluation.

In our study, we kept both \; and Ay in Equation (7) to one (i.e. A\; = Ay = 1) since
the contribution of the homogeneities of inside and outside the contour should be equally
considered. Other parameters in Equation (7) were chosen as follows: € = 1 and At = 0.1,
where € influences the Heavyside function and At controls how quickly the level set function
changes. Note that p controls the smoothness of the final contour. However, If one wants
to depict the fine details of the object, one should choose a small ;2. On the contrary, if one
wants to obtain a smoother contour, one should set a large p. As some of our computer-
extracted features, such as spiculation, characterize the fine details of the lesion margin, we
chose a fairly small value of p, i.e. 0.001 x 10232, which also allows for the use of the 10 bit
data. To ensure numerical stability, the coefficient v must satisfy v - At < i [28], so we set

v = 2 in our study. The maximum number of iterations is set to 500.

. Performance evaluation

The performance of the proposed segmentation algorithm was assessed by comparing the
computer-delineated contours with the outlines drawn by an expert breast radiologist. Be-
sides visually evaluating the agreement of computer-segmented results with radiologist’s
manually-contoured lesion margins, a quantitative measure was used to evaluate the segmen-
tation performance. For a particular lesion, the area overlap ratio (AOR) between manual

segmentation and computer segmentation is defined as:
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Area(M N C)

AOR = Area(M U C)

(16)

where M is the manually-segmented contour and C' is the computer-segmented contour.
AOR ranges from zero to one, being zero in the case of no overlap and one in the case of
a perfect match. For the entire database, a series of AOR thresholds were obtained and
at each AOR threshold, the percentage of lesions “correctly” segmented was calculated by

counting the number of lesions with AOR greater than that threshold.

IV. RESULTS

A. Evaluation of level set smoothness

In our study, a new term Eg = [,(1— || V¢, ||)dady is added to the original active contour
model in |25], thus we initially evaluate the usefulness of this term. Two sets of final contours
were extracted from the entire FFDM database, one was obtained with Egs and the other
without. The results show that Eg can not only provide a smoother contour, but also
push the contour closer to the lesion margin with less iterations, yielding a mean number of
iterations 160 compared to the mean numer of iterations 327 without Eg. In the example
shown in Fig. 8, the left figure shows the segmentation result without smoothing level set
function, which took 500 iterations. While for the result with smoothing level set function

in the right figure, it only took 248 iterations to converge.

|[Figure 8 about here.|

B. Evaluation of dynamic stopping criterion

We investigated our new stopping criterion based on the weighted slope difference between
foreground mean and background mean (Awv,), and compared it to the unweighted slope

difference method as well as the relative foreground change (RFC). The RFC thresholds to
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terminate contour evolution were set as 0.05, and 0.01, respectively. During the evolution, we
recorded the contours using these four stopping criteria and obtained AOR with radiologist’s
outlines.

Fig. 9 shows plots of the fraction of correctly segmented lesions at various AOR threshold
for the four stopping criteria (Av,, Av, RFCyos and RFCyp) on the FFDM databases.
For benign images, all the criteria yielded similar segmentation performances since the initial
contours, obtained by RGI segmentation, are close to the true lesion margins. However, as
RGI segmentation is inferior for malignant lesions, Av,, does perform better among all the

stopping criteria.
[Figure 9 about here.]

Table 1 summerizes the statistical comparison (Holm ¢ test)[34] among these four criteria,
given the mean and standard deviation of AOR for each criterion. In terms of area overlap
ratio (AOR), the weighted slope difference method is statistically better than the unweighted
slope difference method, and the convergence rate at RFC = 0.05 (overall significant level
ol = 0.05). However, we failed to show a statistically significant difference between the
weighted slope difference method and the convergence rate at RFC = 0.01. Nevertheless, if
the number of iterations is taken into account, the mean number of iterations for weighted
slope difference is 156, while it is 280 for RF'Cy ;. The weighted slope difference is more
efficient than RF'Cy ;.

[Table 1 about here.|

C. Comparative evaluation of the segmentation method

The segmentation algorithm was compared with our previously-reported region-growing|6]
and RGI-based segmentation|7] methods. Fig. 10 shows several examples of lesion segmen-
tations using these three segmentation methods. The result of the proposed method visually

demonstrates a better agreement with the radiologist’s outline of the lesion.
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|[Figure 10 about here.]

Fig. 11 shows the fraction of lesions correctly segmented at various overlap threshold
levels. At the overlap threshold of 0.4, for benign lesions, 87% of the images are correctly
segmented with the proposed method, while 72% and 81% of the images are correctly seg-
mented by the region-growing and RGI-based methods, respectively. For malignant lesions,
84% of the images are correctly segmented with the proposed method, while 66% and 67% of

the images are correctly segmented by region-growing and RGI-based methods, respectively.
|[Figure 11 about here.|

Table 2 gives the statistical comparison (Holm ¢ test)[34] for AOR means from the three
segmentation methods. The improvement of AOR with the proposed method was found to

be statistically significant (overall significant level a = 0.05).

[Table 2 about here.|

V. DISCUSSION

We developed a dual-stage segmentation method to efficiently segment mass lesions from
the parenchymal surround in FFDM images. Our proposed method includes a geometric
active contour model, which includes analysis of homogeneities both inside and outside of
the evolving contour. The application of RGI-based segmentation to provide initial contour
not only improves the computational efficiency, but also provides a method with which to
estimate the effective background about the lesion and to suppress unrelated pixel values.
Also, our automatic stopping criterion is lesion-specific, and does not rely on fixed iterations.

As the results show, the term FEg in the active contour model plays an important role for
effective and efficient segmentation. As || Vo ||> 1, div[(1— W)ng] will evolve the level set

function ¢ towards reducing || V¢ ||, thus to smooth ¢. The larger the gradient magnitude

of level set function, the more it will be smoothed. While as || V¢ ||< 1, div[(1 — W)V@
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will evolve the level set function towards increasing || V¢ || to maintain the gradient of the
level set function to some level. This mechanism ensures the level set function, and thus the
final contour, to be relatively smooth. Meanwhile, as || V¢ || is restricted in magnitude, the
foreground has the potential to grow faster.

It should be noticed that the weighted slope difference Av,, is always non-negative as
long as g(x) is a decreasing function. In the active contour model, if only the speed term

driven by image property is considered, the speed of contour can be simplified as:

U= [lg(s) —e2)” = (g(s) —cr)?] - 0

= (c1—c2) [2-9(s) = (c1 +2)] - D

where 0 is the outward unit vector. Inserting ¥ into Equation (15), we have:

Avw:Ll_s~(cl—02)~[2~g(5)—(01+c2)]2-1720.

If ¥ is driven by other image property, such as edge information, this relationship still holds.
When g(s) > 3(c1 + ¢2), Le. s is within the object, the contour will move outward to the
edge, thus, we have Av,, > 0. While if g(s) < %(cl + ¢3), i.e. s is out of object, it will move
inward to the edge, we will also have Av,, > 0. So the weighted slope difference also provides
a general mechanism for terminating contour evolution with other active contour models.
In this study, we empirically compared the segmentation performance of the proposed
method with our previously-reported region growing|6] and RGI-based|7] segmentation meth-
ods. However, it is impossible for us to perform empirical comparisons between our method
and those reviewed in the introduction section, as we do not have codes of those methods.
Timp’s method[10] uses polar coordinate and restricts the mass sizes within certain range,
thus one would expect their method to work better for lesions with circular-like margins.

However, for lesions with irregular shapes or very large sizes, their method may have dif-
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ficulty. Our dual stage segmentation method is able to handle this situation by further
evolving the contour via the active contour model. For the fuzzy-set-based methods devel-
oped by Guliato et al. [11], both of them need to preset some thresholds such as the gray-level
threshold in the first method and the maximum allowed difference between the value of the
pixel being analyzed and the mean of the sub-region in the second method, which prevents
these methods from being applied in a large database. Their two thresholds were manually
selected case by case in their evaluation using a database with 47 mammograms. On the
other hand, our method is flexible in that no threshold need to be set in advance.

In our preliminary study [35], we compared two radiologists’ outlines with a digitized
screen-film mammograms (SFM) database, which consisted of 29 benign (51 mammograms)
and 55 malignant (96 mammograms) lesions. At an overlap threshold of 0.4, 96.6% of
lesion images were correctly segmented by one radiologist in comparison with the other.
This result indicates that the radiologists highly agreed on the lesion margins for SFM. We
could expect that the radiologists would also agree on the lesion margins for FEFDM as the
manufacturer has pre-processed the FFDM images to make them appear to radiologist as
traditional-looking SEM mammographs.

When we developed the proposed segmentation algorithm, the FFDM database was being
constructed, so our method was initially calibrated and tested with the SEM database [33].
After building the FFDM database, we randomly picked three groups of FFDM images, each
of which consisted of five benign and five malignant images, and evaluated the segmentation
performance using the proposed method calibrated with SFM images. The results were
similar with what we had obtained with SFM images. Thus, we believe that the parameters
obtained by SFM also work with FFDM images, which was subsequently validated by the
independent evaluation with the entire FFDM database.

Our results could be partially explained by the pre-processing of FFDM images, which
is performed by the manufacturers. After pre-processing, the gray-level range and constrast

of FFDM images become similar to those of SFM images, which ensures the possibility of
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applying parameters from SFM images to FFDM images as gray-level range and contrast
are two key components used in our proposed lesion segmentation method. Our results also
show the robustness of the proposed method as it mainly uses the global information of

images.

VI. CONCLUSION

In this paper, we present a new lesion segmentation method based on a geometric active
contour model, which includes an initial RGI segmentation, background estimation, back-
ground trend correction, and a dynamic stopping criterion. Evaluation with a large number
of FFDM images has shown that the proposed method is statistically superior to our previous
region-growing and RGl-based algorithms in terms of overlap ratios obtained in compari-
son with expert’s manual outlines. At an overlap threshold of 0.4, 85% of the images are
correctly segmented by the proposed method, while only 69% and 73% of the images are

correctly segmented by our previous region-growing and RGI-based methods, respectively.
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APPENDIX

In this part, we provide the details of the derivation from energy function (4) to the associated

Euler-Lagrange equation (5). For convenience, we restate Equation (4) here as:

By end) — / - 6.(8(z.9)) | Vol y) |
5+ (1= 1| Vo) [)?
+)\1 : |f0($ay) - Cl|2He(¢($ay))

X2 - folx,y) — eo|*(1 — H(@(,y)))]dady. (17)

+

We define F(¢, Vo, x,y) as:

F(6.Vo,x.y) = ubl6) || Vo |l +501— | Vo [)?

+M1lfo — 1P H(9) + Aol fo — 2P (1 — He(9)). (18)

For simplicity, we have omitted the independent variables (x,y) of ¢ and fy. According
to Calculus of Variations, the scalar function ¢(z,y) that minimizes E (¢, c2, @) solves the

PDE:

d OF —d OF OF
490, 193, " 96

0. (19)

Taking the partial derivative of F' with respect to ¢,, ¢, and ¢, respectively, we have:

OF o G

== 55 T
o6, ~ Mg T T g
OF gby gby
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96, ~ MR T T g
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where 0, = d¢> % and we use the relation || Vo ||= /@2 + b3

The partial derivative of 2 87)% with respective to x is:

=1 || Vo || 6.() + Ml(fo — e1)® = Aol fo — 2)*]0c(9)
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@95, = O Ra TG e ) T T Ve

Similarly, we have:

d OF , o d ¢

dy'a9,) = MO a7 0 T

Inserting (20) - (22) back to (19), we obtain:
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[ ]+ [¢ - ] = div[(1 - )Vl
Vo | Vo | Vo |
we finally obtain the compact form of (23) as
0= 5e(¢)[u~div(L¢) “lfo — @)? +Xalfo — @)+ v divl(1 - —=—)Vg]. (24)
Vo | Ve |
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Figure 1: Distribution of lesions’ effective diameters obtained from the FFDM database.
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Figure 2: Schematic diagram of the proposed dual-stage lesion segmentation algorithm.
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Figure 3: Illustration of defining the effective background. In this figure, the solid line
represents the initial contour obtained by RGI segmentation and the dash-dotted rectangle
is the circumscribed rectangle of this initial contour. The effective background is defined as
the region inside the dashed rectangle excluding the region within the initial contour. An
automatic scheme is employed to determine the best d.
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Figure 4: The illustration of determining the distance d. (a) a mammogram with a series of

selected distance d

; (b) B;: the ith background candidate corresponding to d; ; (¢) By;: the ith net background

distances d;, in which the thick dashed rectangle represents the computer

increase. Background is defined as the set of pixels within a given distance d; (pixel) from

the circumscribed rectangle of the initial contour.
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Figure 6: An example of the effect of background trend correction on segmentation. (a) the
original ROI ; (b) segmentation result of (a); (c¢) the processed ROI after background trend
correction; and (d) segmentation result of (c).

35



region 2

0 s L X

Figure 7: The illustration of determining the stopping point. g(z) is a decreasing function
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Figure 8: An example of the effect of level set smoothness to the final segmentation re-
sults. Left: segmentation without level set smoothness; Right: segmentation with level set
smoothness.
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Figure 9: Segmentation performance of four different stopping criteria in terms of area
overlap ratio (AOR) on a clinical FFDM database. In both plots, Av,, is the weighted slope
difference between foreground mean value and background mean value, in which foreground
is the area within the evolving contour and background is the area outside contour; Av is the
unweighted slope difference between these two mean values. RFCj; stands for a stopping
criterion that terminates contour from evolution when the relative foreground change (RFC)
is not greater than 0.01. Similarly, RFCy o5 stops the contour evolution when RFC' is
not greater than 0.05. Left: evaluated on 327 benign images; Right: evaluated on 412
malignant images. The results show that the weighted slope difference is statistically superior
to unweighted slope difference and convergence rate at RF'C' = 0.05 on malignant images.
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Figure 10: Segmentation results for 5 malignant lesion examples. (a) radiologist’s outline, (b)
region-growing, (¢) RGI-based segmentation and (d) the proposed dual-stage segmentation
method
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Table I: Statistical comparison of the performance of four stopping criteria in the dual-
stage segmentation in terms of average area overlap (AOR), and p-values are given for
the comparison of the weighted slope difference with any other stopping criterion. The
significant level «; for the individual paired ¢ test is calculated using Holm’s procedure
(overall o’ = 0.05). Same convention as Fig. 9.

A’Uw Av RFCO'()l RFC()_05

Benign

mean £+ std  0.61£0.19 0.61£0.19 0.61£0.19 0.61=£0.19

p-value — 0.856 0.801 0.601

sig. lev. (o) — — — -
Malignant

mean £ std  0.59£0.19 0.53£0.20 0.57£0.19 0.52£0.20

p-value — < 0.001 0.192 < 0.001

sig. lev. (o) — 0.05 — 0.025
All

mean £ std  0.60£0.19 0.57£0.20 0.59£0.19 0.56 £0.20

p-value — 0.002 0.25 < 0.001

sig. lev.(a;) — 0.05 — 0.025
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Table II: Statistical comparison of the three lesion segmentation algorithms. Performance
is given by average area overlap ratio, and p-values are given for the comparison of the
dual-stage segmentation with the previous region-growing and RGI-based method. The
significant level «; for the individual paired ¢ test is calculated using Holm’s procedure
(overall o = 0.05).

Dual-stage segmentation RGI Region-growing

Benign

mean £ std 0.61+0.19 0.58 +£0.19 0.51 +0.20

p-value - 0.01 < 0.001

seg. lev. (a;) — 0.05 0.025
Malignant

mean * std 0.59 +£0.19 0.48 +0.20 0.49 +£0.20

p-value - < 0.001 < 0.001

seg. lev. () - 0.025 0.05
All

mean * std 0.60 +0.19 0.52 +£0.20 0.50 £0.20

p-value — < 0.001 < 0.001

seg. lev. () - 0.05 0.025
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Appendix B: RSNA 2006

TITLE:

Feature correlation on multiple-view FFDM images
AUTHORS:

Yading Yuan, Maryellen L. Giger, Hui Li and Charlene Sennett
PURPOSE: (473/2200)

The objective of this study is to evaluate the correlation performance of individual
computerized features extracted from the full field digital mammograms (FFDM) of a
lesion obtained in two different views. This research provides a guide for discriminating
corresponding and non-corresponding lesion pairs within the CAD framework. It is also
helpful for guiding the development of new features to improve the accuracy of image
matching in disease diagnosis and prognosis.

METHOD AND MATERIALS: (1234/2200)

One dataset (A) includes 103 biopsy proven cases (48 benign solid lesions and 55
malignant lesions), each of which has a craniocaudal (CC) and mediolateral (ML) view.
Another dataset (B) includes 52 cases (24 benign solid lesions and 28 malignant lesions),
each of which has a CC and mediolateral oblique (MLO) view. In order to evaluate the
robustness of the correlation performance to lesion segmentation, besides the
radiologist’s outlines, three automatic segmentation methods were employed to extract
the mass lesion from the surrounding tissues. The conventional region-growing method
uses abrupt changes in size and circularity as the rules of segmentation. The radial
gradient index (RGI) based method applies RGI model to the suspicious lesion multiplied
by a constraint function. The region-based active contour model evolves the contour
based on the homogeneities both inside and outside of the evolving contour. Fifteen
computer-extracted features of each lesion were calculated in both views in order to
quantify the characteristics of margin, shape, contrast and texture of the lesion. For each
feature, correlation coefficient between the two views and the p-value of the derived
correlation coefficient were obtained.

RESULTS: (672/2200)

With the human outline, the feature characterizing the diameter of lesion yielded the
correlation efficient of 0.87 for dataset A and 0.88 for dataset B, both of which have p-
values far less than 0.05. The features characterizing shape, contrast and texture showed
better performance among the 15 individual features despite of segmentation methods,
pathology and the type of view pairs. This is because the features representing large-scale
information are less sensitive to the change of position than those representing small-



scale information, which results in the higher correlation between large-scale features
from different views than that of small-scale features.

CONCLUSIONS: (301/2200)

Our investigation indicates that the features that characterize the large-scale information
of lesion have higher correlation between the two view images. We are currently
applying these features to develop automated image matching method to determine
corresponding and non-corresponding lesion pairs.



Appendix C: SPIE Medical Imaging 2008 (Submitted)

TITLE:

Correlative feature analysis of FFDM images

AUTHORS:

Yading Yuan, Maryellen L. Giger, Hui Li and Charlene Sennett
KEYWORDS:

Mammography, correlative feature analysis, computer-aided diagnosis
ABSTRACT:

Identifying the corresponding image pair of a lesion is an essential step for combining information from
different views of the lesion to improve the diagnostic ability for both radiologists and CAD systems. Because
of the non-rigidity of the breasts and the 2D projective property of mammograms, this task is not trivial. In
this study, we present a computerized framework that differentiates the corresponding images from different
views of a lesion from non-corresponding ones. A dual-stage segmentation method, which employs an initial
radial gradient index (RGI) based segmentation and an active contour model, was firstly applied to extract
mass lesions from the surrounding tissues. Then various lesion features were automatically extracted from
each of the two views of each lesion to quantify the characteristics of margin, shape, size, texture and context
of the lesion, as well as its distance to nipple. We employed a two-step method to select an effective subset of
features, and combined it with a BANN to obtain a discriminant score, which yielded an estimate of the
probability that the two images are of the same physical lesion. ROC analysis was used to evaluate the
performance of the individual features and the selected feature subset in the task of distinguishing
corresponding pairs from non-corresponding pairs. By using a FFDM database with 124 corresponding image
pairs and 35 non-corresponding pairs, the distance feature yielded an AUC (area under the ROC curve) of
0.80 with leave-one-out evaluation, and the feature subset, which includes distance feature, lesion size and
lesion contrast, yielded an AUC of 0.86.

DISCRIPTION OF PURPOSE:

Merging information from different views of a lesion has been widely recognized to allow radiologists to
better detect and evaluate breast abnormalities in FFDM images. However, since a mammogram represents
the 2D projection of the 3D distribution of attenuation coefficient, as well as the breast being a non-rigid
object, the conventional image-registration techniques are not appropriate. In this study, we propose a
computerized scheme, which relies on computer-extracted features instead of the original image, to determine
if an image pair from different views represents the same lesion.

METHOD(S):

A dual-stage segmentation method was firstly applied to extract lesions from the surrounding tissues. This
algorithm utilizes a geometric active contour model that maximizes an energy function based on the
homogeneities inside and outside of the evolving contour. Prior to the application of the active contour model,
a RGI-based method is applied to yield an initial contour close to the lesion boundary location in a
computationally efficient manner.

Three groups of computer-extracted lesion features were used in our study. The first group includes features
characterizing spiculation, margin, shape and contrast of a lesion, which are widely used for the task of
distinguishing between malignant and benign lesions. The second group includes texture features extracted
from various regions including the lesion, the surrounding neighborhood of the lesion, and the entire ROI,
respectively. For each region, a 2D gray-level co-occurrence matrix (GLCM) was constructed, and texture
features were extracted to quantify the spatial dependence of gray-level values. We developed an automatic



neighborhood estimation method to determine the effective circumstance of the lesion. The third group
includes a distance feature calculated as the Euclidean distance from the nipple location to the center of the
lesion. A nipple searching method was developed to identify the nipple location automatically.

A two-step method was employed for feature selection. A classifier was firstly applied to each single feature
pair from different views, yielding a “correspondence” feature that represents the probability of corresponding
pairs. Then, a linear stepwise feature selection method was used to select the effective subset of these
correspondence features.

We used the BANN as our classifier, which incorporates Bayesian inference to avoid the problem of “over
fitting”. Receiver operating characteristic (ROC) analysis was used to assess the performance of the
individual features and the selected feature subset in the task of distinguishing corresponding pairs from non-
corresponding pairs.

RESULTS:

In our preliminary study, we tested the proposed scheme using a FFDM database, which includes 131 biopsy-
proven lesions (63 benign and 68 malignant). From this database, we constructed 124 corresponding pairs and
35 non-corresponding pairs. Each pair consists of a craniocaudal (CC) view and a mediolateral (ML) view.
Considering the most realistic scenario of lesion mismatch in clinical practice, the non-corresponding pairs
were constructed from cases of the same patients but different physical lesions.

The correlation between the distance feature, from the automatic nipple identification method and those from
manual nipple identification was 0.997 (p<0.0005). In leave-one-out evaluation by lesion, the distance feature
outperformed among all the single features, yielding an AUC of 0.80. Distance feature, lesion size and lesion
contrast were selected as the effective feature subset and yielded an AUC of 0.86. The improvement by using
multiple features was statistically significant compared to single feature performance (p = 0.0075).

NEW OR BREAKTHROUGH WORK TO BE PRESENTED:

Our study includes three attractive features: 1) This correlative feature analysis (CFA) framework is based on
computer-extracted features instead of original images, which is different from conventional image
registration in which the registration is to align two images known to represent the same object, while the task
of CFA is to evaluate the probability that the given two images represent the same object; 2) The newly
developed distance feature improves the performance of single feature from AUC of 0.71 (lesion size) to 0.80
with leave-one-out evaluation (p = 0.04); 3) The first step of the new two-stage feature selection method
effectively reduces the dimensionality of the feature space, and thus improves the performance to AUC of
0.86 with leave-one-out evaluation, as compared with 0.76 when applying the original features directly
(p=0.03).

CONCLUSIONS:

We have presented a correlative feature analysis framework to estimate the probability that a given pair of
two images as of the same physical lesion, and our investigation indicates that the proposed method is a
promising way to distinguish between corresponding and non-corresponding pairs. We are collecting more
cases to evaluate our method on a larger scale.

INDICATE WHETHER THE WORK IS BEING, OR HAS BEEN, SUBMITTED FOR
PUBLICATION OR PRESENTATION ELSEWHERE, AND, IF SO, INDICATE HOW THE
SUBMISSIONS DIFFER

No.





